Multiple global bifurcation branches for nonlinear Picard problems

نویسنده

  • Jacek Gulgowski
چکیده

In this paper we prove the global bifurcation theorem for the nonlinear Picard problem. The right-hand side function φ is a Caratheodory map, not differentiable at zero, but behaving in the neighbourhood of zero as specified in details below. We prove that in some interval [a, b] ⊂ R the Leray-Schauder degree changes, hence there exists the global bifurcation branch. Later, by means of some approximation techniques, we prove that there exist at least two such branches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiple solutions of a nonlinear reactive transport model using least square pseudo-spectral collocation method

The recognition and the calculation of all branches of solutions of the nonlinear boundary value problems is difficult obviously. The complexity of this issue goes back to the being nonlinearity of the problem. Regarding this matter, this paper considers steady state reactive transport model which does not have exact closed-form solution and discovers existence of dual or triple solutions in so...

متن کامل

Vibration and Bifurcation Analysis of a Nonlinear Damped Mass Grounded System

In this paper, vibrations and bifurcation of a damped system consists of a mass grounded by linear and nonlinear springs and a nonlinear damper is studied. Nonlinear equation of motion is derived using Newton’s equations. Approximate analytical solutions are obtained using multiple time scales (MTS) method. For free vibration, the approximate analytical results are compared with the numerical i...

متن کامل

Existence, Multiplicity, and Bifurcation in Systems of Ordinary Differential Equations

We prove new non-resonance conditions for boundary value problems for two dimensional systems of ordinary differential equations. We apply these results to the existence of solutions to nonlinear problems. We then study global bifurcation for such systems of ordinary differential equations Rotation numbers are associated with solutions and are shown to be invariant along bifurcating continua. T...

متن کامل

A Multigrid-Lanczos Algorithm for the Numerical Solutions of Nonlinear Eigenvalue Problems

We study numerical methods for solving nonlinear elliptic eigenvalue problems which contain folds and bifurcation points. First we present some convergence theory for the MINRES, a variant of the Lanczos method. A multigrid-Lanczos method is then proposed for tracking solution branches of associated discrete problems and detecting singular points along solution branches. The proposed algorithm ...

متن کامل

Approximation of solution branches of nonlinear equations

We present a gênerai theory for the approximation of regular and bifurcating branches of solutions ofnonhneat équations It can be apphed to numerous problems, including different ial équations on unbounded domains, in connection with vanous numencal algonthms, for example Galerkin methods with numencal intégration Résumé —On présente une théorie générale de l'approximation de branches, régulièr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008